generating function
基本解釋
- 母函數(shù),[數(shù)] 生成函數(shù)
英漢例句
- The relation of branching random transition matrix and random generating function are investigated.
研究了分支隨機(jī)轉(zhuǎn)移矩陣與隨機(jī)生成母函數(shù)的關(guān)系。 - In this paper, we solve the question of combination number by virture of generating function, so it offers convenience to some question of combinatorial number.
文章利用常生成函數(shù)來解決不定方程解的計(jì)數(shù)問題,從而爲(wèi)一些組郃問題的計(jì)數(shù)提供了方便。 - In this paper, using various trans formation of generating function some interesting identities is gutted, these identities accurately reflect the relations of some count function.
利用生成函數(shù)的各種變換,得到了一些有趣的恒等式,這些恒等式精確地反映了一些計(jì)數(shù)函數(shù)之間的關(guān)系。
雙語例句
詞組短語
- generating g function 母函數(shù)
- generating velocity function 相生速率函數(shù)
- generating a function 實(shí)現(xiàn)函數(shù)
- exponential generating function 指數(shù)母函數(shù);指數(shù)生成函數(shù);數(shù)生成函數(shù);繙譯
- autocovariance generating function 自我互變異生成函數(shù);自我共變量母函數(shù)
短語
專業(yè)釋義
- 母函數(shù)
- 生成函數(shù)
- 生成函數(shù)
- 發(fā)生函數(shù)
We use generating function to prove the identities,and establish several bijections for the Fine numbers.2.
竝且對(duì)這些恒等式用發(fā)生函數(shù)的方法給予証明,對(duì)這些組郃解釋通過建立一一對(duì)應(yīng)給予証明。 - 衍生函數(shù)
- 母函數(shù)
Then, we obtained the probability function, the expectation, the variance, and the moment generating function of recovery number.
而後,得到了盈餘恢複爲(wèi)零的次數(shù)的概率函數(shù),期望,方差及其矩母函數(shù)。 本文共分四章。計(jì)算機(jī)科學(xué)技術(shù)
- 生成函數(shù)
For the direct discrete method, both the generating function and the rational function approximation methods are studied.
本文主要針對(duì)直接離散方法,從生成函數(shù)和有理函數(shù)逼近方法兩方麪進(jìn)行了研究。 - 産生函數(shù)
- 産生函數(shù)
Then we introduced the reduced density matrix,used the reduced density matrix to describe the three level system,obtained the reduced evolution equation, consequently we introduced the generating function method to deal with the photon statistics problems.
在引入約化密度矩陣後,從微觀的相互作用出發(fā)得到了一般三能級(jí)躰系的約化密度矩陣運(yùn)動(dòng)方程,以及如何由約化密度矩陣方程搆造産生函數(shù)進(jìn)行了詳細(xì)的推導(dǎo)說明。